Manifolds and Group actions

Homework 10

Mandatory Exercise 1. (6 Points)
Let $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ be the inclusion. In this exercise we consistently view $T_{p} S^{n} \subset \mathbb{R}^{n+1}$. We orient S^{n} and \mathbb{R}^{n+1} in the standard way.
a) Let X be a vector field on S^{n} that does not vanish. Show that the map

$$
H(t, p)=\cos (\pi t) p+\sin (\pi t) \frac{X_{p}}{\left\|X_{p}\right\|}
$$

is a homotopy between the identity map and the antipodal map.
b) Let ω be the $(n-1)$ form on \mathbb{R}^{n-1} given by

$$
\omega=\sum_{i=1}^{n+1}(-1)^{i+1} x^{i} d x^{1} \wedge \ldots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \ldots \wedge d x^{n+1}
$$

Compute $d \omega$ and show that $\int_{S^{n}} i^{*} \omega>0$.
c) Show that the vector field X cannot exist if n is even. What about odd n ?

Mandatory Exercise 2. (14 Points)
Let M, N be closed oriented manifolds of dimension n. Let $f: M \rightarrow N$ be a smooth map. It can be shown that there exists a real number $\operatorname{deg}(f)$ such that, for all $\omega \in \Omega^{n}(N)$ the following equality holds

$$
\int_{M} f^{*} \omega=\operatorname{deg}(f) \int_{N} \omega
$$

a) Show that if f is not surjective, then $\operatorname{deg}(f)=0$.
b) Show that if f is an orientation preserving diffeomorphism, that then $\operatorname{deg}(f)=1$, and that if f is an orientation reversing diffeomorphism, that then $\operatorname{deg}(f)=-1$.
c) Let $f: M \rightarrow N$ be surjective, and let q be a regular value for f. Show that $f^{-1}(q)$ is a finite set and that there exists a neighborhood W of q in N such that $f^{-1}(W)$ is a disjoint union of open sets V_{i} of M with $\left.f\right|_{V_{i}}: V_{i} \rightarrow W$ is a diffeomorphism.
d) Suppose that f has a regular value. Show that $\operatorname{deg}(f)$ is an integer. Remark: One can show that in this setting the regular values of f are open and dense. Any map has plenty of regular values and the degree is always an integer.
e) Given $k \in \mathbb{Z}$, construct a smooth map $f_{k}: S^{1} \rightarrow S^{1}$ of degree k.
f) Show that homotopic maps have the same degree.
g) Let $f: S^{n} \rightarrow S^{n}$ be an orientation preserving diffeomorphism if n is even, or an orientationreversing diffeomorphism if n is odd. Prove that f must have a fixed point. Hint: If f has no fixed points, you can construct a homotopy between f and the antipodal map.

Hand in on 3th of July in the pigeonhole on the third floor.

